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Abstract

benefits of the presented metric.

Support vector machine (SVM)

The quality of biometric raw data is one of the main factors affecting the overall performance of biometric systems.
Poor biometric samples increase the enrollment failure and decrease the system performance. Hence, controlling the
quality of the acquired biometric raw data is essential in order to have useful biometric authentication systems.
Towards this goal, we present a generic methodology for the quality assessment of image-based biometric modality
combining two types of information: 1) image quality and 2) pattern-based quality using the scale-invariant feature
transformation (SIFT) descriptor. The associated metric has the advantages of being multimodal (face, fingerprint, and
hand veins) and independent from the used authentication system. Six benchmark databases and one biometric
verification system are used to illustrate the benefits of the proposed metric. A comparison study with the National
Institute of Standards and Technology (NIST) fingerprint image quality (NFIQ) metric proposed by the NIST shows the
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1 Introduction

Biometric systems are being increasingly used in our daily
life to manage the access of physical (such as border con-
trol) and logical (such as e-commerce) resources. Biomet-
rics uses the authentication factors based on ‘Something
that qualifies the user’ and ‘Something the user can do!
The main benefits of this authentication method is the
strong relationship between the individual and its authen-
ticator as well as the easiness of its use. Also, it is usually
more difficult to copy the biometric characteristics of
an individual than most of other authentication methods
such as passwords.

Despite the advantages of biometric systems, many
drawbacks decrease their proliferation. The main one
is the uncertainty of the verification result. By contrast
to password checking, the verification of biometric raw
data is subject to errors and represented by a similar-
ity percentage (100% is never reached). This verification
inaccuracy is due to many reasons such as the variations
of human characteristics (e.g., occlusions [1]), environ-
mental factors (e.g., illuminations [2]), and cross-device
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matching [3]. This kind of acquisition artifacts may deeply
affect the performance of biometric systems and hence,
decrease their use in real life applications. Moreover, the
impact of quality on the system overall performance is
also presented by the results of the Fingerprint Verifica-
tion Competition (FVC) series of competitions (FVC in
2000, 2002, 2004, and 2006) [4]. More specifically, the used
databases in FVC 2004 and FVC 2006 are more difficult
than the ones in FVC 2002 and FVC 2000, due to the per-
turbations deliberately introduced. The results show that
the equal error rate (EER) in average of the best match-
ing algorithm has increased from 0.96 in FVC 2000 and
FVC 2002 to 2.115 in FVC 2004 and FVC 2006. There-
fore, controlling the quality of the acquired biometric raw
data is considered as an essential step in both enrollment
and verification phases. Using the quality information,
poor quality samples can be removed during the enroll-
ment or rejected during the verification. Such information
could be also used for soft biometrics and multimodal
approaches [5,6].

We present in this paper a quality assessment metric of
image-based biometric raw data using both information:
1) image quality and 2) pattern-based quality using the
scale-invariant feature transformation (SIFT) keypoints
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extracted from the image. The presented metric has the
advantages of being multimodal (face, fingerprint, and
hand veins) and independent from the used authentica-
tion system.

The outline of the paper is given as follows: Section 2
presents related previous works on quality assessment of
biometric raw data. We present in Section 3 the pro-
posed quality assessment metric. Section 4 describes the
experimental results obtained for the six trial biomet-
ric databases (four for face, two for fingerprint and hand
veins, respectively). A comparison study with the NFIQ
metric on fingerprints is given in Section 5. The con-
clusion and some perspectives of this work are given in
Section 6.

2 Related works
The quality assessment of biometric raw data is receiving
more and more attention in biometrics community. We
present in this section an overview of existing biometric
image-based quality metrics.

The quality assessment of biometric raw data is divided
into three points of view as illustrated in Figure 1 [7]:

e Character: refers to the quality of the physical
features of the individual.

e Fidelity: refers to the degree of similarity between a
biometric sample and its source.

e Utility: refers to the impact of the individual
biometric sample on the overall performance of a
biometric system.

In biometrics, there is an international consensus on
the fact that the quality of a biometric sample should be
related to its recognition performance [8]. Therefore, we
present in this paper a utility-based quality assessment
metric of biometric raw data. In the rest of this section, we
present an overview of the existing image-based quality
metrics.

Alonso-Fernandez et al. [9] present an extensive
overview of existing fingerprint quality metrics which are
mainly divided into three major categories:
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1. Based on the use of local features of the image;

Based on the use of global features of the image;

3. Or addressing the problem of quality assessment as a
classification problem.

o

The presented methods in [9] have shown their effi-
ciency in predicting the quality of fingerprints images.
However, these methods are modality-dependent, hence
they cannot be used for other kinds of modalities (such
as the face). An example of these metrics is the National
Institute of Standards and Technology (NIST) finger-
print image quality (NFIQ) metric[10] proposed by the
NIST. NFIQ metric is dedicated to fingerprint quality
evaluation.

Shen et al. [11] applied the Gabor filters to identify
blocks with clear ridge and valley patterns as good quality
blocks. Lim et al. [12] combined local and global spa-
tial features to detect low quality and invalid fingerprint
images. Chen et al. [13] developed two new quality indices
for fingerprint images. The first index measures the
energy concentration in the frequency domain as a global
feature. The second index measures the spatial coherence
in local regions. These methods has shown their efficiency
in predicting the quality of fingerprint images. However,
they are dedicated for fingerprint modality and could not
be used for other modalities such as veins images.

Krichen et al. [1] present a probabilistic iris quality mea-
sure based on a Gaussian mixture model (GMM). The
authors compared the efficiency of their metric with exist-
ing ones according to two types of alterations (occlusions
and blurring) which may significantly decrease the per-
formance of iris recognition systems. Chaskar et al. [14]
assessed nine quality factors of iris images such as ideal iris
resolution (IIR), actual iris resolution (AIR), etc. Other iris
quality metrics are presented in [15,16]. However, these
methods are used to measure the quality of iris image and
cannot be used for other types of modalities.

He et al. [17] present a hierarchical model to com-
pute the biometric sample quality at three levels: database,
class, and image quality levels. The method is based on the
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Figure 1 Quality assessment of biometric raw data: character, fidelity, and utility.
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quantiles of genuine and impostor matching score distri-
butions. However, their model could not be used directly
on a single capture (i.e., requires a pre-acquired database).

Zhang and Wang [2] present an asymmetry-based qual-
ity assessment method of face images. The method uses
SIFT descriptor for quality assessment. The presented
method has shown its robustness against illumination
and pose variations. Another asymmetry-based method is
presented in [18,19]. However, this approach supposes the
asymmetry hypothesis hence, could not be used for others
types of modalities.

For the finger veins modality, very few are the existing
works that predict the quality of finger vein images. We
can cite the work presented by Qin et al. [20]. The authors
present a quality assessment method of finger vein images
based on the Radon transform to detect the local vein
patterns. We believe that extensive work should be done
in this area since the veins modality is considered as a
promising solution to be implemented.

2.1 Discussion

Quality assessment of biometric raw data is an essential
step to achieve a better accuracy in real-life applications.
Despite this, few researches have been conducted to this
point with respect to research activities on performance
side. However, most of the existing quality metrics are
modality- and matcher-dependent. The others, based on
the genuine and impostor matching score distributions,
could not be used directly on a single capture (i.e., they
require a large number of captures for the same person in
order to constitute its genuine score distribution). There-
fore, the main contribution of this paper is the definition
of a quality metric which can be considered as indepen-
dent from the used matching system, and also it can be
used for several biometric modalities (face, fingerprint,
and hand veins images). It detects with a reasonable accu-
racy three types of alterations that may deeply affect the
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global performance of the most widely used matching
systems. The presented metric is not based on asymme-
try hypothesis. Thus, it may be used for several types
of modalities (such as fingerprint, face, hand, and finger
veins) and can be used directly on a single capture after
training the model.

3 Developed metric

The presented metric is designed to quantify the quality
of image-based biometric data using two types of infor-
mation as illustrated in Figure 2. The retained principle is
as follows: using one image quality criterion (Section 3.1)
and four pattern-based quality criteria (Section 3.2), a sup-
port vector machine (SVM)-based classification process
(Section 3.3) is performed to predict the quality of the
target biometric data.

3.1 No-reference image quality
The image quality assessment is an active research topic
which is widely used to validate treatment processes
applied to digital images. In the context of image com-
pression, for example, such kind of assessment is used to
quantify the quality of the reconstructed image. Existing
image quality assessment metrics are divided into three
categories: 1) full-reference (FR) quality metrics, where
the target image is compared with a reference signal that
is assumed to have perfect quality; 2) reduced-reference
(RR) quality metrics, where a description of the target
image is compared with a description of the reference sig-
nal; and 3) no-reference (NR) quality metrics, where the
target image is evaluated without any reference to the
original one. Despite the acceptable performance of cur-
rent FR quality algorithms, the need for a reference signal
limits their application and calls for reliable no-reference
algorithms.

In our study, we have used a no-reference image qual-
ity assessment (NR-IQA) index, since the reference image
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Figure 2 General scheme of the proposed quality metric.
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does not exist. The used NR-IQA method in this paper
is the blind image integrity notator using discrete cosine
transform (DCT) statistics (BLIINDS) index introduced
by Saad et al. [21]. This index is based on a DCT frame-
work. This makes it computationally convenient, uses a
commonly used transform, and allows a coherent frame-
work. The BLIINDS index is defined from four features,
using 17 x 17 image patches centered at every pixel in the
image, that are then pooled together:

1. DCT-based contrast feature (v1)
Contrast is a basic perceptual attribute of an image.
One may distinguish between global contrast
measures and the ones that are computed locally
(and possibly pooled into one measure post local
extraction). The contrast of the k™ local DCT patch
is computed as follows:

1 L«
k AC
cx) =— —== 1
) =~ ; P (1)

where N is the patch size, xpc represents the DC
coefficient and the set {x;-| i = 1 : N} represents the
AC coefficients. Then, the local contrast scores from
all patches of the image are then pooled together by
averaging the computed values to obtain a global
image contrast value v:

1<
vi= ) ) )
i=1

where M is the number of local patches.

2. DCT-based structure features (vy)
Structure features are derived locally from the local
DCT frequency coefficients computed on a patch k.
They are based on statistical traits of the DCT
histogram for which the DC coefficient is ignored.
To measure these statistical traits of the DCT
histograms of the patch k, its kurtosis is computed to
quantify the degree of its peakedness and tail weight:

4
ey = LI )

where u is the mean of x4¢, and o is its standard
deviation. Then, the resulting values for all patches
are pooled together by averaging the lowest tenth
percentile of the obtained values to compute the
global image kurtosis value vs.

3. DCT-based anisotropy orientation (vs and vs)
It has been hypothesized that degradation processes
damage a scene’s directional information.
Consequently, anisotropy, which is a directionally
dependent quality of images, was shown by Gabarda
and Cristbal [22] to decrease as more degradation is
added to the image. The anisotropy measure is
computed using the Renyi entropy on DCT image
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patches along four different orientations

0 = 0,45,90, 135 in degrees. Each patch consists of
the DCT coefficients of oriented pixel intensities. We
discard the DC coefficient, since the focus is on
directional information. Let the DCT coefficients of
k™ patch of orientation 6 be denoted by Py [k, ],
where j is the frequency index of the DCT
coefficient. Each DCT patch is then subjected to a
normalization of the form:

= . Pyl k,j1?
Pylk,jl= —————
B ST

where N is the size of the oriented k™ patch. Finally,
the associated Renyi entropy ng is computed as:

(4)

i 1

N
logy | Y Pylk,j1° ()
j=1
where 8 > 1. Finally, the two measures of anisotropy
vz and vy are defined as:

v3 = var(E(RY)) et vy = max(E(RE)), Vk, Y0  (6)

Due to the fact that the perception of image details
depends on the image resolution, the distance from the
image plane to the observer and the acuity of the observers
visual system, a multiscale approach, is applied to com-
pute the final global score as:

L i i i i
BLIINDS = [ [ v; vy vs° vy (7)
i=1

constraints by Z;Ll P a; = 1 and where L repre-
sents the number of decomposition level used. The a}
values are obtained using the correlation of each criterion
(v;) with the subjective notes given by human observers
[21]. Examples of predicted quality score using BLIINDS

index are given in Figure 3. The stronger the image is
degraded, the lower the quality index is.

3.2 Pattern-based quality

The used pattern-based quality criteria are based on sta-
tistical measures of keypoint features. We have used this
approach since keypoint features describe, in a stable
manner, the regions of the image where the information
is important. This approach is widely used in object [23]
and biometric recognition [24] issues. For the descriptor
vector computation, several methods exist in the literature
such as the scale-invariant feature transform [25], shape
contexts [26], and speed up robust features (SURF) [27].
In our study, we have used the SIFT algorithm since a
comparison study presented by Mikolajczyk and Schmid
[28] shows that SIFT outperformed the other methods.
SIFT algorithm has been also successfully used in biomet-
ric recognition for different modalities such as the veins
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Figure 3 Examples of BLIINDS index on samples of FACES94 database. From left to right, reference image then its noisy images. 13.58, 11.15,

9.35 8.50

[24], face [29], fingerprint [30], iris [31] as well as in 3D
facial recognition [32].

SIFT algorithm consists of four major stages: 1) scale-
space extrema detection, 2) keypoint localization, 3) ori-
entation assignment, and 4) keypoint descriptor. In the
first stage, potential interest points are identified, using a
difference-of-Gaussian function, that are invariant to scale
and orientation. In the second stage, candidate keypoints
are localized to sub-pixel accuracy and eliminated if found
to be unstable. The third stage identifies the dominant ori-
entations for each keypoint based on its local image patch.
The keypoint descriptor in the final stage is created by
sampling the magnitudes and orientations of the image
gradients in a neighborhood of each keypoint and building
smoothed orientation histograms that contain the impor-
tant aspect of the neighborhood. Each local descriptor is
composed of a 4 x 4 array (histogram). For each coordi-
nate of this array, an eight-orientation vector is associated.
A 128-elements (8 x (4 x 4)) vector is then built for each

keypoint.
In other words, each image im is described by a set of
invariant features X(im) = {(k; = (si, sci, %, y)| i =

1 : N(im)} where s; is the 128-elements SIFT invariant
descriptor computed near the keypoint k;, (x;,y;) is the
position of k; in the original image im, sc; is the scale,
and N (im) is the number of detected keypoints in image
im. The features extracted are invariant to image scaling
and rotation and partially invariant to change in illumina-
tion and 3D camera viewpoint. Examples of detected SIFT
keypoints are given in Figure 4. From these features, four
criteria are retained (see Section 4.3.1) to contribute to the
quality assessment of the biometric raw data.

3.3 SVM-based classification

In order to predict biometric sample quality using both
information (image quality and pattern-based quality),
we use the support vector machine. From all exist-
ing classification schemes, a SVM-based technique has
been selected due to high classification rates obtained
in previous works [33] and to their high generalization

abilities. SVMs have been proposed by Vapnik [34] and
are based on the structural risk minimization principle
from statistical learning theory. SVMs express predictions
in terms of a linear combination of kernel functions cen-
tered on a subset of the training data, known as support
vectors (SV).

Suppose we have a training set {x;,y;} where x; is the
training pattern and y; the label. For problems with two
classes, with the classes y; € {—1,1}, a support vector
machine [34] implements the following algorithm. First,
the training points {x;} are projected into a space H (of
possibly infinite dimension) by means of a function ®(-).
The second step is to find an optimal decision hyperplane
in this space. The criterion for optimality will be defined
shortly. Note that for the same training set, different trans-
formations ®(-) may lead to different decision functions.
A transformation is achieved in an implicit manner using
a kernel K (-, -) and consequently the decision function can
be defined as :

14

fO) = (w, ®X) + b= afyK(x;,X) +b (8)
i=1

with of € R. The values w and b are the parameters
defining the linear decision hyperplane. In SVMs, the
optimality criterion to maximize is the margin, that is to
say, the distance between the hyperplane and the nearest

Figure 4 Examples of detected SIFT keypoints.
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Figure 5 An example of use of the presented method.

point ®(x;) of the training set. The o] which optimize this
criterion are obtained by solving the following problem:

¢ ¢

MaXe, Yi_y @ — 5 Y1 ity (Xi, X))

with constraints,

0 < o < C )

¢

iy = 0.
where C is a penalization coefficient for data points
located in or beyond the margin and provides a compro-
mise between their numbers and the width of the margin.
In this paper, we use the RBF kernel:

)

k(xi,xj) = exp(—y lIxi — xj[1%) (10)

In order to train models with RBF kernels, we use a
python script provided by the LIBSVM library [35]. This
script automatically scales training and testing sets. It
searches (only for the training set) the best couple (C, y)
of the kernel. The search of the best couple (C, y) is done
using a fivefold cross-validation computation.

Originally, SVMs have essentially been developed for
the two classes problems. However, several approaches
can be used for extending SVMs to multi-class prob-
lems. The method we use in this communication, is called
one against one. Instead of learning N decision functions,
each class is discriminated here from another one. Thus,
w decision functions are learned and each of them
makes a vote for the affectation of a new point x. The class
of this point x becomes then to the majority class after the
voting.

4 Experimental results

The goal of the proposed quality metric is to detect, with
a reasonable accuracy, three synthetic alterations which

Table 1 Parameters of the MATLAB alteration methods

Alteration type Method Level 1 Level2  Level3

Blurring fspecial o=1 o=2 0=6
(‘gaussian’,[7 7], o)

Gaussian noise  imnoise v=0003 v=001 v=0017

(I, ‘gaussian’, 0.01, v)

imresize Scale=0.8 Scale=0.6 Scale=04

(I, scale, 'nearest)

Resize

may deeply affect the most widely used matching systems.
The proposed metric may be considered as independent
from the used matching system. An example of its practi-
cal use is illustrated in Figure 5. The method predicts the
alteration of the input image. Then, depending from the
robustness of the used matching system against the pre-
dicted alteration, the matching system qualifies the image
(good, fair, bad, or very bad quality).

In Section 4.1, we present the experimental protocol fol-
lowed by the validation process of the proposed metric.
The results are then given in Section 4.3.

4.1 Protocol

Six benchmark databases and one biometric matching
algorithm are used in order to validate the proposed
metric.

4.1.1 Alteration process

In this study, we introduce three types of synthetic alter-
ations as well as three levels for each type using the
MATLAB tool:

e Blurring alteration: blurring images are obtained
using a two-dimensional Gaussian filter. To do so, we
use the fspecial (‘gaussian’, hsize, o) method which
returns a rotationally symmetric Gaussian lowpass
filter of size hsize with standard deviation .

e Gaussian noise alteration: noisy images are obtained
using the imnoise (I, ‘gaussian’, m, v) method. It adds
Gaussian white noise of mean m and variance v to
the image I.

e Resize alteration: such kind of altered images are
obtained using the imresize (I, scale, ‘nearest’)

Table 2 SVM classes definition

Class Description Alteration levels

1 Reference or original image X

2,3,and 4 Blurring alteration 1,2,and 3, respectively
5,6,and 7 Gaussian noise alteration 1,2,and 3, respectively
8,9,and 10 Resize alteration 1,2, and 3, respectively
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Figure 6 Samples from FACES94.

method. It resizes the image I using a
nearest-neighbor interpolation.

Table 1 presents the parameters required of the used
alteration MATLAB methods.

Using these alterations, the input vector to SVM is the
five retained quality criteria (one for image quality and
four pattern-based quality) and the output can belong to
ten different classes defined as follows (see Table 2):

e (lass 1 illustrates a reference image.

e (Classes 2 to 10 illustrate three types of alterations and
three levels for each type (see Section 4.1.2 for details
about the introduced alterations).

4.1.2 Benchmark databases

In this study, we use six benchmark databases. For each
database, we introduce three types of alterations (blurring,
Gaussian noise, and resize alterations) and three levels for
each type of alteration. The presented alterations are com-
monly realistic during the acquisition of biometric raw
data, which may deeply affect the overall performance of
biometric systems. Finally, we get 60 databases: 6 refer-
ences and 54 altered databases (i.e., 9 for each reference
database):

1. Reference databases

e FACES94 database [36]: This database is
composed of 152 individuals and 20 samples per
individual. These images have been captured in
regulated illumination, and the variation of
expression is moderated (Figure 6).

e ENSIB database [37]: It is composed of 100
individuals and 40 samples per individual. Each

sample corresponds to one pose from left to
right (Figure 7).

e FERET database [38,39]: It is composed of 725
individuals with from 5 to 91 samples per
individual (the average value is 11). Each sample
corresponds to a pose angle, illumination, and
expression (Figure 8).

e AR database [40]: It is composed of 120
individuals and 26 samples per individual. These
included images captured under different
conditions of illumination, expression, and
occlusion (Figure 9).

e FV(C2002 DB, database [41]: It is composed of
100 individuals and 8 samples per individual.
The database was used during the Fingerprint
Verification Competition (FVC 2002)

(Figure 10).

e Hand veins database [24]: It is composed of 24
individuals and 30 samples per individual. The
database has been collected by Telecom &
Management SudParis (Figure 11).

2. Altered databases
Using the introduced alterations presented in
Section 4.1.1, we generated 54 databases from the 6
reference databases: FACES94, ENSIB, FERET, AR,
FVC2002 DB,, and the hand veins databases.
Figure 12 shows these alterations on a sample from
FACES94 database.

4.1.3 Biometric matching algorithm

The used biometric matching algorithm is a SIFT-based
algorithm [25]. The matching similarity principle used
is described in previous works [24]. Each image im is
described by a set of invariant features X (im) as described

Figure 7 Samples from ENSIB.

AdLLA
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Figure 8 Samples from FERET.

in Section 3.2. The verification between two images in
and imy corresponds to the similarity between two sets
of features X (im;) and X (imjy). We thus use the follow-
ing matching method which is a modified version of a
decision criterion first proposed by Lowe [25]. Given two
keypoints x € X(im;) andy € X(imy), we say that x is
associated to y if:

d(x,y) = min e x(imy))d(*,2) and d(x,y) < Cd(x,y/)
(11)

where C is an arbitrary threshold, d(-,-) denotes the
Euclidean distance between the SIFT descriptors and y7
denotes any point of X (imy) whose distance to x is mini-
mal but greater than d(x, y):

d(x,y) = ming ¢ X(imy), d(xz)>d(xy)) 3% 2) (12)

In other words, x is associated to y if y is the closest
point from x in X(imy) according to the Euclidean dis-
tance between SIFT descriptors and if the second smallest
value of this distance d(x, /) is significantly greater than
d(x,y). The significance of the necessary gap between
d(x,y) and d(x, y7) is encoded by the constant C. Then, we
consider this keypoint x is matched to y iff x is associated
to y and y is associated to x. Figure 13 presents an example
of a matching resulting from a genuine and an impostor
comparison.

4.2 Validation process

According to Grother and Tabassi [8], biometric quality
metrics should predict the matching performance. That
is, a quality metric takes a biometric raw data and pro-
duces a class or a scalar related to error rates associated to

that sample. Therefore, we use the EER which illustrates
the overall performance of a biometric system [42]. EER is
defined as the rate when both false acceptance rate (FAR)
and false reject rate (FRR) are equal: the lower EER, the
more accurate the system is considered to be. In order
to validate the proposed quality metric, we proceed as
follows:

e Quality criteria behavior with alterations: the first
step of the validation process consists of showing the
robustness of the used five quality criteria in
detecting the introduced alterations: blurring,
Gaussian noise, and resize alterations.

e Learning the multiclass SVM models: for face
databases, we learn four multi-class SVM models
using the images from the four benchmark databases
(one multiclass SVM per benchmark database
illustrated by SVMe,ch) and one multiclass SVM
model containing examples from the four benchmark
databases (illustrated by SVMyy). For the fingerprint
and hand veins databases, we learn two multi-class
SVM models, respectively. In order to train and to
test the multi-class SVM models, we split each
benchmark database images into two sets Siraining and
Stest in a balanced way (i.e., both sets contain the
same ratio of reference and altered images). The
choice of the kernel and the selection of the
parameters required are presented in Section 3.3.

e Quality sets definition: the proposed metric predicts a
quality class of the target image. In order to show the
utility of this metric, we need to define the quality sets
for the used authentication system. Depending from
the used authentication system, some alterations may
have more impact on its global performance than

Figure 9 Samples from AR.

AR P
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Figure 10 Samples from FVC 2002 DB;.

others. Thereafter, we use the EER to illustrate the
global performance of the biometric system.

e EER value of each quality set: in order to quantify the
effectiveness of our quality metric in predicting
system performance, we have put each image to a
quality set, using its predicted label by our metric.
Then, we have calculated the EER value for each
quality set. The effectiveness of the method is
quantified by how well our quality metric could
predict system performance among the defined
quality sets. More generally speaking, the more the
images are degraded, the more the performance of
the overall system will be decreased (illustrated by an
increase of its EER value).

4.3 Results

4.3.1 Quality criteria behavior with alterations
In this section, we show the robustness of the used cri-
teria in detecting alterations presented in the previous
section. To do so, we use the Pearson’s correlation coeffi-
cient between two variables as defined in Equation 13. It
is defined as the covariance of the two variables (X and Y)
divided by the product of their standard deviation (ox and
oy):

Cov(X,Y)

O0x0y

Pearson(X,Y) = (13)

In order to compute the correlation of the used crite-
ria with the three types of alterations, we define for each
type of alteration and for each criterion p the variables as
follows:

® X, = {Xpkl k =1:4} where X, is the set of values of
criterion p for the reference databases images,

(Xp2, X3, Xpa) are the sets of values of criterion p for
the altered databases levels 1, 2, and 3, respectively.

e Alteration levels are represented by the variable Y (1:
for the reference databases; 2, 3 and 4: for the altered
databases levels 1, 2, and 3). More precisely,
Y={wlyx =1fork=1:N, yy =2fork=N+1:
2N, yx =3fork =2N +1:3N and yx = 4 fork =
3N + 1 : 4N} where N is the size of the four
reference databases.

Using the extracted SIFT keypoints and the Pearson’s
correlation coefficient, four pattern-based quality criteria
are retained to contribute to quality assessment:

1. Keypoints: the number of keypoints detected from
image im.

2. DC coefficient: DC coefficient of the matrix M;, with

N (im) rows and 128 columns, related to SIFT

invariant descriptor for s;, i = 1 : N(im) where

N (im) is the number of detected keypoints for image

im.

Mean (u) and

4. Standard deviation (o) of scales: mean and standard
deviation of scales related to the keypoints detected
from image im.

w

Therefore, the vector V used to predict biometric sam-
ple quality is a five-dimensional vector containing one

Figure 11 Samples from the hand veins database.
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Figure 12 Alterations for a reference image from FACES94. From left to right, reference image then alteration levels 1, 2, and 3. (a) Blurring

alteration, (b) Gaussian noise alteration, and (c) Resize alteration.

image quality criterion and four pattern-based criteria as
depicted in Table 3.

Figure 14 shows that the four pattern-based criteria
(keypoints, DC coefficient, mean, and standard devia-
tion of scales) are pertinent in detecting the three types
of alterations: blurring, Gaussian noise, and resize alter-
ations. The image quality criterion BLIINDS has been
shown to be efficient (with a correlation coefficient more
than 0.6) in detecting blurring and Gaussian noise alter-
ations. For the resize alteration, BLIINDS has not been

shown to be efficient which is not a surprising result since
resize alteration does not affect image quality (BLIINDS
is a multiresolution NR-IQA algorithm). Moreover, the
distortion cards given in Figure 15 show also the efficiency
of BLIINDS index (i.e., each feature v;, i = 1 : 4) in
detecting altered images.

4.3.2 Learning the multi-class SVM models
We learned seven multiclass SVM models: five for
face databases and two for hand veins and fingerprint

Figure 13 Example of matching results resulting from a genuine (on the left) and an impostor comparisons (on the right).
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Table 3 The five-dimensional vector for predicting
biometric sample quality

Vector V
Image quality criterion BLIINDS
Pattern-based criteria Keypoints

DC coefficient
Mean (u) of scales

Standard deviation (o) of scales

databases. Table 4 presents the accuracy of the learned
multiclass SVM models on both training and test sets. We
have put the symbol ‘x’ at the last two lines, since we have
only one multiclass SVM generated per database. Table 4
shows the efficiency of the proposed metric in predicting
the three synthetic alterations (blurring, Gaussian noise,
and resize) of data, with a valuable ten-class classification
accuracy (going from 82.29% to 97.73% on the training set
and from 81.16% to 91.1% on the test set). Results for the
different databases are similar but not exactly the same.
The reason is related to the complexity of the databases
incorporating more or less artifacts.

In order to test more the generalization of these results,
we have tested the following:

e We used one of the four face databases for training
and the rest three for tests. We obtained a valuable
four-class accuracy of 87.84%. The four classes are 1:
original; 2, 3, and 4: blurring, Gaussian noise, and
resize level 3, respectively. For a ten-class
classification, this accuracy decreased to 50.78% due
to the different resolution of images in each database.
However, the resolution of images to be used for
training should be as much as similar for the test
images in order to maintain a high accuracy. This is

0,9
0,8
0,7
0,6

0,5
0,4
0,3
o | I
0,1
0 |
1 2 3 4

5  Quality criteria

W Blurring

Gaussian noise

M Resize

Correlation coefficient

1: Keypoints, 2: DC coefficient, 3: Mean of scales,

4: Standard deviation of scales and 5: BLIINDS
Figure 14 Pearson’s correlation coefficients (in absolute value).
Correlation between the proposed criteria and the three alterations
among the four face databases.
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illustrated by the results of the multiclass SVM
(SVMa) presented in Table 4 (third and fourth
columns). We have obtained good classification
results since the images used for training this model
contains a set of images from each database.

e We used a subset of the CASIA-FingerprintV5 [43]
(first 100 persons, five images per person, left thumb)
of 500 images. The volunteers of
CASIA-FingerprintV5 were asked to rotate their
fingers with various levels of pressure to generate
significant intra-class variations. Using the FVC 2002
DB, database for learning the multiclass SVM, we
classified each of the CASIA-FingerprintV5 500
images into the four categories presented in Table 5
(1 for good, 2 for fair, 3 for poor, and 4 for very poor).
We then computed the intra-class matching scores,
using the matching algorithm presented in
Section 4.1.3, of the CASIA-FingerprintV5 database
(by taking the first image as reference and the rest for
the test). Using the Pearson’s correlation coefficient
between the obtained intra-class matching scores and
the four categories, we obtained a significant
correlation of 0.67. This shows that images classified
of good quality by the proposed method provided
higher matching scores compared to the images
predicted of bad quality; which clarify the benefits of
the presented method.

4.3.3 Quality sets definition

In order to quantify the robustness of the proposed met-
ric in predicting system performance, we need first to
define the quality sets of the used biometric authentica-
tion systems. Therefore, we have tested the robustness of
the used system against the three alterations presented
in Section 4.1.2. The EER values are computed using the
first image as a reference (single enrollment process) and
the rest for the test. Figure 16 shows that all the intro-
duced alterations have an impact on overall performance
of the used authentication matching algorithm presented
in Section 4.1.3. Therefore, we define in Table 5 the quality
sets definition for the used matching algorithm.

4.3.4 EERvalue of each quality set

In order to validate the proposed quality metric in predict-
ing the used matching algorithm performance, according
to Grother and Tabassi [8], we calculate the EER value of
each quality set predicted by the learned multiclass SVM
models. Figure 17 shows the EER values of each quality set
among the used biometric databases. From this figure, we
can deduce several points:

e The proposed metric has shown its efficiency in
predicting the used matching system among the six
biometric databases. More generally speaking, the
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L1

D4

Figure 15 Distortion cards. The cards are related to a slightly altered image (first row) and a highly altered one (second row), respectively. vj,
i =1:4correspond to the four features used in BLIINDS index computation.

more the images are altered, the more the EER values
are increasing. This is demonstrated by the increasing
curves presented in Figure 17. For the hand veins
database, we have obtained a slight increase of EER
values (0%: good category to 0.05%: very poor
category). This result can be explained by the small
size of the hand veins database (24 persons) and the
robustness of the used matching system against the
introduced alterations.

e The four curves related to the four face databases,
presented in Figure 17, are computed using the four
multiclass SVM (one multi-class SVM per database).
We have obtained similar curves using the other
multiclass SVM model containing examples from the
four benchmark databases. This shows the scalability
of the presented metric to be used on different types
of images (such as the image resolution).

5 Comparison study with NFIQ

In order to show the efficiency of the proposed metric, we
present in this section a comparison study with the NFIQ
[10]. We have used NFIQ metric proposed by the NIST,

Table 4 Accuracy (in %) of the learned multiclass SVM
models on both training and test sets

SVMeach SVM,

Straining Stest Straining Stest
FACES94 91.01 86.69 85.68 85.28
ENSIB 97.73 89.82 94.92 91.1
FERET 8233 81.2 82.29 81.16
AR 90.08 89.08 90.7 88.92
FVC2002 DB; X X 91.7 83.68
Hand veins X X 95.25 90.2

since it is the most cited at the literature for the fingerprint
modality. NFIQ provides five levels of quality (NFIQ = 1
indicates high quality samples, whereas NFIQ = 5 indi-
cates poor quality samples). For the comparison with the
proposed method (four levels of quality), we consider that
the fourth and fifth levels belong to the very bad quality
set.

In order to compare the proposed metric with NFIQ,
we use the approach suggested by Grother and Tabassi
[8] when comparing quality metrics. To do so, we use the
Kolmogorov-Smirnov (KS) test [44] which is a nonpara-
metric test to measures the overlap of two distributions: in
our case, distributions of scores of genuine and impostors,
respectively. More generally speaking, KS test returns a
value defined between 0 and 1: for better quality samples,
a larger KS test statistic (i.e., higher separation between
genuine and impostor distributions) is expected.

Figure 18 illustrates the KS test statistic values of both
quality metrics (NFIQ and the presented one). For the
three quality sets (bad, fair, and good), Figure 18 shows
that the proposed metric (KS statistic going from 0.797 to
0.869) outperformed the NFIQ metric (KS statistic going
from 0.632 to 0.82).

6 Conclusion and perspectives

The quality assessment of biometric raw data is a key fac-
tor to take into account during the enrollment step when

Table 5 Category of quality

Quality set Predicted quality class by SVM Description
I 1 Good

Il 2,5 and 8 Fair

Il 3,6,and 9 Poor

v 4,7,and 10 Very poor
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Figure 16 Impact of alterations on overall performance of the used authentication system among the 4 face databases.

using biometric systems. Such kind of information may be
used to enhance the overall performance of biometric sys-
tems, as well as in fusion approaches. However, few works
exist in comparison to the performance ones. Toward
contributing in this research area, we have presented an
image-based quality assessment metric of biometric raw
data using two types of information (image and pattern-
based quality). The proposed metric is independent from
the used matching system and could be used to several
kind of modalities. Using six public biometric databases
(face, fingerprint, and hand veins), we have shown its effi-
ciency in detecting three kinds of synthetic alterations
(blurring, Gaussian noise, and resolution).

For the perspectives of this work, we aim to add an addi-
tional quality criterion in order to detect luminance alter-
ation, which is also considered as an important alteration
affecting biometric systems (mainly, facial-based recog-
nition systems). We aim also to compare the proposed
metric with NFIQ using other kind of biometric match-
ing algorithms (such as BOZORTHS3 [45] proposed by the
NIST). In addition, we are planning to test the efficiency
of the presented method on altered images combining the
presented alterations, which also represent another kind
of real-life alterations. This can be done using the pre-
sented criteria and a SVM or a genetic algorithm in order
to produce an index between 0% and 100% (i.e., more the
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Figure 17 EER values of each quality set among the used biometric databases. Face, fingerprint, and hand veins databases.
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Figure 18 Comparison study between the proposed metric and
NFIQ: Kolmogorov-Smirnov (KS) test statistic.

index is near 100% better is the quality). Modality-specific
alterations could also be used to have a precise analysis of
the efficiency of the proposed methodology.
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